Genome-Wide Analysis of lncRNA and mRNA Expression During Differentiation of Abdominal Preadipocytes in the Chicken
نویسندگان
چکیده
Long noncoding RNAs (lncRNAs) regulate adipogenesis and other processes associated with metabolic tissue development and function. However, little is known about the function and profile of lncRNAs during preadipocyte differentiation in the chicken (Gallus gallus). Herein, lncRNA and mRNA expression in preadipocytes at different stages of differentiation were analyzed using RNA sequencing. A total of 1,300,074,528 clean reads and 27,023 novel lncRNAs were obtained from 12 samples. The number of genes (1336 lncRNAs and 1759 mRNAs; 3095 in total) differentially expressed across various stages declined as differentiation progressed. Differentially expressed genes were found to be involved in several pathways related to preadipocyte differentiation that have been extensively studied, including glycerolipid metabolism, and the mammalian target of rapamycin, peroxisome proliferator-activated receptor, and mitogen-activated protein kinase signaling pathways. To our knowledge, some pathways are being reported for the first time, including the propanoate metabolism, fatty acid metabolism, and oxidative phosphorylation pathways. Furthermore, 3095 differentially expressed genes were clustered into eight clusters, and their expression patterns were determined through K-means clustering. Genes involved in the K2 cluster likely play important roles in preadipocyte differentiation. Six stage-specific modules related to A0 (day 0), A2 (day 2), and A6 (day 6) stages were identified, using weighted coexpression network analysis. Nine central, highly connected .genes in stage-specific modules were subsequently identified, including XLOC_068731, XLOC_022661, XLOC_045161, XLOC_070302, CHD6, LLGL1, NEURL1B, KLHL38, and ACTR6 This study provides a valuable resource for further study of chicken lncRNA and facilitates a better understanding of preadipocyte differentiation in the chicken.
منابع مشابه
Genome-wide analysis of lncRNAs and mRNAs expression during the differentiation of abdominal preadipocytes in chicken
متن کامل
Expressional Analysis of Stem Cell Marker SALL4 in Mesencephalon during Chicken Embryogenesis
Background SALL gene family represent a group of evolutionary conserved zinc finger transcription factors which are involved in normal development. It includes four members (SALL1 to SALL4). SALL4 has significant roles in the maintenance of pluripotency and self-renewal, efficient proliferation /stabilization and cell fate decision of embryonic stem cells (ESCs). Our aim in this study was to a...
متن کاملchHDAC11 mRNA Expression During Prenatal and Postnatal Chicken (Gallus gallus) Brain Development
Background: Histone deacetylation plays an essential role in transcriptional regulation of cell cycle progression and other evolutionary processes. Several results confirm the importance of the latest found HDAC11 gene to deacetylate histone core in neurons and their supportive cells in developing the vertebrate Central Nervous System (CNS). Objectives: This study investigates the HDAC11 pote...
متن کاملAnalysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken
Long noncoding RNAs (lncRNAs) regulate metabolic tissue development and function, including adipogenesis. However, little is known about the function and profile of lncRNAs in intramuscular preadipocyte differentiation in chicken. Here, we identified lncRNAs in chicken intramuscular preadipocytes at different differentiation stages using RNA sequencing. A total of 1,311,382,604 clean reads and ...
متن کاملI-52: Maternal mRNA Metabolism duringOocyte-to-Zygote Transition
Background: Maternal mRNA degradation is a selective process that occurs in waves corresponding to important developmental transitions such as resumption of meiosis, fertilization and zygotic genome activation. It has been demonstrated that the number, position, and combination of 3 UTR cis-acting elements interacting with trans-acting protein factors regulate translation and mRNA stability. Ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017